Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
1.
Journal of Integrative Medicine ; (12): 254-267, 2023.
Article in English | WPRIM | ID: wpr-982680

ABSTRACT

OBJECTIVE@#This study aims to clarify how the stimulation of acupuncture points is achieved by needles with different surface texture during acupuncture; it also seeks to lessen injury at the insertion site and increase the therapeutic efficacy of acupuncture, by simulating the mechanical effects of various needle surface patterns on Zusanli (ST36) without changing the radius of acupuncture needles.@*METHODS@#Five acupuncture needle models with different surface patterns, including the smooth needle, the lined needle, the ringed needle, the left-hand threaded needle and the right-hand threaded needle, and a layered model of the Zusanli acupoint were used to investigate how to reduce tissue damage and increase stimulation during acupuncture treatment. Puncturing of the skin as well as lifting-inserting and twisting needle manipulations were simulated using these models, and the degree of damage and force of stimulation caused by the acupuncture needles with different surface patterns during acupuncture were compared.@*RESULTS@#The smooth needle and the lined needle caused the least tissue damage during insertion, while the left-hand threaded and the right-hand threaded needles caused the most damage. The ringed needle, the left-hand threaded needle and the right-hand threaded needle stimulated the acupoint tissue more during lifting-inserting manipulations, while the lined needle and the smooth needle produced less stimulation. The stimulation of the lined needle on the acupoint tissue was the largest during twisting manipulation, whereas the left-hand threaded needle and the right-hand threaded needle had smaller effects. In lifting-inserting and twisting manipulations, both the left-hand threaded needle and right-hand threaded needle provided more stimulation, but the torsion direction in which they produced better stimulation was the opposite.@*CONCLUSION@#According to the simulation results, the ringed pattern enhances stimulation best in the lifting-inserting manipulation, whereas the lined pattern enhances stimulation best in the twisting manipulation. Both the right-hand and left-hand thread patterns have certain enhancing effects in these two operations. Taking the geometric properties of the pattern into account, the left-hand thread pattern and the right-hand thread pattern have the geometric characteristics of both the lined pattern and the ringed pattern. To conclude, a pattern perpendicular to the movement direction during the acupuncture manipulation creates more stimulation. These results have significance for future needle design. Please cite this article as: Sun MZ, Wang X, Li YC, Yao W, Gu W. Mechanical effects of needle texture on acupoint tissue. J Integr Med. 2023; 21(3): 254-267.


Subject(s)
Acupuncture Points , Needles , Acupuncture Therapy/methods , Hand
2.
Dental press j. orthod. (Impr.) ; 28(2): e2321373, 2023. tab, graf
Article in English | LILACS-Express | LILACS, BBO | ID: biblio-1439987

ABSTRACT

ABSTRACT Objective: To compare the initial stress distribution and displacement on mandibular dentition using extra and inter-radicular mini-implants for arch distalization, by means of finite element analysis. Methods: For this study, two finite element models of the mandible were designed. The models consisted of periodontal ligament (PDL) and alveolar bone of all teeth until second molars. In the Case 1, bilateral extra-radicular buccal-shelf stainless steel mini-implants (10.0-mm length; 2.0-mm diameter) were placed between first and second permanent molars. In the Case 2, bilateral inter-radicular stainless steel mini-implants (10.0-mm length; 1.5-mm diameter) were placed between second premolar and first permanent molar. Power hook was attached between canine and first premolar at a fixed height of 8mm. In the two cases, 200g of distalization force was applied. ANSYS v. 12.1 software was used to analyze and compare von Mises stress and displacement in the mandibular dentition, PDL and bone. Results: Higher stresses were observed in mandibular dentition with the inter-radicular implant system. The amount of von Mises stress was higher for cortical bone (85.66MPa) and cancellous bone (3.64MPa) in Case 2, in comparison to cortical bone (41.93MPa) and cancellous bone (3.43MPa) in Case 1. The amount of arch distalization was higher for mandible in Case 1 (0.028mm), in comparison to Case 2 (0.026mm). Conclusion: Both systems were clinically safe, but extra-radicular implants showed more effective and controlled distalization pattern, in comparison to inter-radicular implants, in Class III malocclusion treatment.


RESUMO Objetivo: Comparar a distribuição da tensão inicial e o deslocamento na dentição inferior usando mini-implantes extra e inter-radiculares para distalização da arcada, por meio da análise de elementos finitos. Métodos: Dois modelos de elementos finitos da mandíbula foram criados, os quais consistiram de ligamento periodontal (PDL) e osso alveolar de todos os dentes até os segundos molares. No Caso 1, mini-implantes extra-radiculares de aço inoxidável (10,0 mm de comprimento; 2,0 mm de diâmetro) foram colocados bilateralmente na buccal-shelf entre o primeiro e o segundo molares permanentes. No Caso 2, mini-implantes de aço inoxidável inter-radiculares (comprimento de 10,0 mm; diâmetro de 1,5 mm) foram colocados bilateralmente entre o segundo pré-molar e o primeiro molar permanentes. Um Power hook foi preso entre o canino e o primeiro pré-molar a uma altura fixa de 8mm. Nos dois casos, foi aplicada força de distalização de 200g. O software ANSYS v. 12.1 foi usado para analisar e comparar a tensão de von Mises e o deslocamento na dentição inferior, ligamento periodontal e osso. Resultados: Maiores tensões foram observadas na dentição inferior com o sistema de implantes inter-radiculares. A quantidade de tensões de von Mises foi maior para osso cortical (85,66MPa) e osso esponjoso (3,64MPa) no Caso 2, em comparação com osso cortical (41,93MPa) e osso esponjoso (3,43MPa) no Caso 1. A quantidade de distalização da arcada inferior foi maior no Caso 1 (0,028 mm), em comparação com o Caso 2 (0,026 mm). Conclusão: Ambos os sistemas foram clinicamente seguros, mas os implantes extra-radiculares mostraram um padrão de distalização mais eficaz e controlado, em comparação com os implantes inter-radiculares, para tratamento da má oclusão de Classe III.

3.
Journal of Forensic Medicine ; (6): 452-458, 2022.
Article in English | WPRIM | ID: wpr-984135

ABSTRACT

OBJECTIVES@#To reconstruct the cases of acceleration craniocerebral injury caused by blunt in forensic cases by finite element method (FEM), and to study the biomechanical mechanism and quantitative evaluation method of blunt craniocerebral injury.@*METHODS@#Based on the established and validated finite element head model of Chinese people, the finite element model of common injury tool was established with reference to practical cases in the forensic identification, and the blunt craniocerebral injury cases were reconstructed by simulation software. The cases were evaluated quantitatively by analyzing the biomechanical parameters such as intracranial pressure, von Mises stress and the maximum principal strain of brain tissue.@*RESULTS@#In case 1, when the left temporal parietal was hit with a round wooden stick for the first time, the maximum intracranial pressure was 359 kPa; the maximum von Mises stress of brain tissue was 3.03 kPa at the left temporal parietal; the maximum principal strain of brain tissue was 0.016 at the left temporal parietal. When the right temporal was hit with a square wooden stick for the second time, the maximum intracranial pressure was 890 kPa; the maximum von Mises stress of brain tissue was 14.79 kPa at the bottom of right temporal lobe; the maximum principal strain of brain tissue was 0.103 at the bottom of the right temporal lobe. The linear fractures occurred at the right temporal parietal skull and the right middle cranial fossa. In case 2, when the forehead and left temporal parietal were hit with a round wooden stick, the maximum intracranial pressure was 370 kPa and 1 241 kPa respectively, the maximum von Mises stress of brain tissue was 3.66 kPa and 26.73 kPa respectively at the frontal lobe and left temporal parietal lobe, and the maximum principal strain of brain tissue was 0.021 and 0.116 respectively at the frontal lobe and left temporal parietal lobe. The linear fracture occurred at the left posterior skull of the coronary suture. The damage evaluation indicators of the simulation results of the two cases exceeded their damage threshold, and the predicted craniocerebral injury sites and fractures were basically consistent with the results of the autopsy.@*CONCLUSIONS@#The FEM can quantitatively evaluate the degree of blunt craniocerebral injury. The FEM combined with traditional method will become a powerful tool in forensic craniocerebral injury identification and will also become an effective means to realize the visualization of forensic evidence in court.


Subject(s)
Humans , Finite Element Analysis , Biomechanical Phenomena , Wounds, Nonpenetrating , Head , Craniocerebral Trauma
4.
Journal of Biomedical Engineering ; (6): 339-346, 2022.
Article in Chinese | WPRIM | ID: wpr-928230

ABSTRACT

To explore the influence of bionic texture coronary stents on hemodynamics, a type of bioabsorbable polylactic acid coronary stents was designed, for which a finite element analysis method was used to carry out simulation analysis on blood flow field after the implantation of bionic texture stents with three different shapes (rectangle, triangle and trapezoid), thus revealing the influence of groove shape and size on hemodynamics, and identifying the optimal solution of bionic texture groove. The results showed that the influence of bionic texture grooves of different shapes and sizes on the lower wall shear stress region had a certain regularity. Specifically, the improvement effect of grooves above 0.06 mm on blood flow characteristics was poor, and the effect of grooves below 0.06 mm was good. Furthermore, the smaller the size is, the better the improvement effect is, and the 0.02 mm triangular groove had the best improvement effect. Based on the results of this study, it is expected that bionic texture stents have provided a new method for reducing in-stent restenosis.


Subject(s)
Bionics , Computer Simulation , Coronary Vessels , Hemodynamics/physiology , Models, Cardiovascular , Stents , Stress, Mechanical
5.
Journal of Medical Biomechanics ; (6): E766-E770, 2022.
Article in Chinese | WPRIM | ID: wpr-961798

ABSTRACT

Finite element method (FEM) has become an effective tool for biomechanical researches because of its high efficiency, accuracy and repeatability. Due to the complex anatomical structure and motion characteristics of foot and ankle, FEM can solve the problems that are difficult to be solved in real experiments with the help of powerful simulation modeling and data calculation ability, which has unique advantages and has been widely used. In this paper, the literatures on foot and ankle biomechanics using FEM at home and abroad in recent five years were summarized, and the following 4 aspects were reviewed: biomechanical analysis of foot and ankle under different motion states, researches on tissue characteristics, clinical treatment analysis, and researches on orthosis and shoes, so as to provide theoretical references for the study of foot and ankle biomechanics, as well as new ideas for the application and development of FEM in the field of foot and ankle biomechanics in the future.

6.
Journal of Medical Biomechanics ; (6): E631-E637, 2022.
Article in Chinese | WPRIM | ID: wpr-961778

ABSTRACT

Objective Aiming at solving the problem of poor accuracy for numerical solution of traditional finite element method (FEM) in numerical analysis on piezoelectric effects of bone remodelling, a model with an edge-based smoothed FEM (ES-FEM) was proposed. Methods The bone model was discretized by triangular elements, and the smoothing domain was constructed based on edges of the existing mesh element. Based on gradient smoothing technique, the smoothed strain gradient and the smoothed electric field gradient were obtained, and the discrete equations of the system were constructed under the framework of smoothed Galerkin weakform. Results The changes of bone mineral density (BMD) and the distributions of electric potential under piezoelectric effects in the process of bone remodelling were reflected by using the above model. Compared with FEM, ES-FEM could improve the accuracy of simulation result for bone remodelling to a certain extent. Conclusions The proposed ES-FEM can simulate the process of bone remodelling more accurately. The accurate prediction for piezoelectric effect of bone reconstruction by this method provides an effective theoretical basis for clinical research of bone diseases.

7.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 827-831, 2022.
Article in Chinese | WPRIM | ID: wpr-936415

ABSTRACT

@#Deep bite is a common clinical malocclusion that has a great impact on patients’ facial aesthetics and oral function. Bite opening is the key step in the treatment of deep bite, playing a decisive role in the development of mandible and the progress of orthodontic treatment. Torque and tip control during the correction of deep bites is a hot topic in orthodontics. The three-dimensional finite element method can accurately simulate clinical processes and conduct dynamic stress analysis, which provides the basis of the biomechanical mechanism. This paper reviewed the finite element analysis of various orthodontic systems for bite opening to provide a reference for clinical application. The emergence of mini-implants provided a new idea for anchorage control in bite opening. Finite element studies found that high-positioned mini-implants are beneficial for bodily tooth intrusion and proposed the ideal position for force application. For the finite element simulation of the reverse curve archwire, it was found that the intrusion and inclination of the anterior teeth increased with the curve depth of the archwire. The application of clear aligners has also been flourishing, but these forces are still difficult to effectively control. Finite element studies on their attachment design and corresponding tooth movement may be helpful to open the bite quickly and effectively. However, the existing studies still have modeling limitations. The structural simplification, linearization and nonstandard parameter definition of the model reduce model accuracy. Additionally, the existing research mostly focused on initial tooth movement, and studies on long-term tooth movement after bone remodeling are lacking. These studies are needed in the future.

8.
Dental press j. orthod. (Impr.) ; 27(4): e2120492, 2022. tab, graf
Article in English | LILACS-Express | LILACS, BBO | ID: biblio-1404486

ABSTRACT

ABSTRACT Objective: To analyze and compare the Von Mises stress and principal stress distribution in palatal bone around the palatal implant in lingual orthodontics (LiO) for single and double palatal implant systems with varying lengths of lever arm. Methods: Two groups were assessed: single (Group 1) and double (Group 2) palatal implant systems, which were further divided into two subgroups, based on lever arm length, for analyzing stress in the palatal bone around the implant. Hence, two 3D finite element models of bilateral maxillary first premolar extraction cases were constructed in each system. Lingual brackets (0.018-in slot) were positioned at the center of the clinical crown. In both systems, 150g of retraction force was applied, and ANSYS v. 12.1 software was used to analyze and compare stress in the palatal bone around the palatal implant. Results: In this study, higher stress was observed at the inner threaded interface of cortical bone. Magnitude of Von Mises stress was higher in Group 2 (0.63 MPa and 0.65 MPa) in comparison to Group 1 (0.29 MPa and 0.29 MPa). Similarly, magnitude of principal stress was higher in Group 2, in comparison to Group 1. Higher stress was observed in the apical region of the implant-bone interface of cancellous bone. Conclusion: This study concluded that the Von Misses stress as well as principal stress in the palatal bone were within the optimal limit in both groups. Finally, it can be concluded that both systems (single and double palatal implant) were safe for the patients in clinical use of 150g of retraction force.


RESUMO Objetivo: Analisar e comparar as tensões de Von Mises e a distribuição das tensões principais no osso palatino ao redor de implantes palatinos em Ortodontia Lingual (OL) para sistemas de implantes palatinos unitários ou duplos com comprimentos variados do braço de alavanca. Métodos: Foram delineados dois grupos para o presente estudo: Grupo 1 - com sistema de implante palatino unitário e Grupo 2 - com sistema de implantes palatinos duplos. Em seguida, os grupos foram divididos em dois subgrupos, com base no comprimento do braço de alavanca, para analisar as tensões no osso palatino ao redor do implante. Para cada sistema, foram construídos dois modelos 3D de elementos finitos (MEF) de casos com extração bilateral de primeiros pré-molares superiores. Braquetes linguais (slot 0,018") foram posicionados no centro das coroas clínicas. Nos dois sistemas, foram aplicados 150g de força de retração nos dentes anteriores, e o software ANSYS v. 12.1 foi usado para analisar e comparar as tensões no osso palatino ao redor dos implantes. Resultados: Foram observados maiores níveis de tensões na parte interna rosqueada no osso cortical. A magnitude das tensões de Von Mises foi maior no Grupo 2 (0,63MPa e 0,65MPa) em comparação ao Grupo 1 (0,29MPa e 0,29MPa). De forma semelhante, foi observada maior magnitude das tensões principais no Grupo 2 do que no Grupo 1. Maiores tensões foram observadas na região apical da interface osso/implante no tecido ósseo esponjoso. Conclusão: A tensões de Von Mises e as tensões principais no osso palatino ficaram dentro do limite ideal em ambos os grupos. Ambos os sistemas de implantes palatinos (unitário e duplo) foram seguros para o uso clínico em pacientes com força de retração de 150g.

9.
Rev. habanera cienc. méd ; 20(4): e3211, 2021. tab, graf
Article in Spanish | LILACS, CUMED | ID: biblio-1289629

ABSTRACT

Introducción: El tratamiento inicial de la cervicalgia por degeneración de los discos intervertebrales es conservador, pero en caso de fallo la discectomía es la opción quirúrgica habitual, sustituyendo el disco por un injerto óseo u otra estructura que cumpla total o parcialmente las funciones del primero. El Servicio de Neurocirugía del Hospital General Camilo Cienfuegos de Cuba ha diseñado un nuevo modelo de prótesis de disco intervertebral cervical para tratar esta enfermedad. Objetivo: Evaluar el desempeño mecánico de la prótesis diseñada a través del método de los elementos finitos bajo las cargas habituales de la columna cervical. Material y Métodos: Se realizó un estudio experimental mediante la simulación numérica, según el método de los elementos finitos, sometiendo la prótesis a las cargas axiales recomendadas por las normas ASTM F2423-11e ISO 18192-1.2011 mediante el software Free CAD 0.18. Resultados: Los mayores esfuerzos soportados por la prótesis en la posición neutral, flexión anterior y flexión lateral fueron de 28.79 MPa, 52.29 MPa y 55.59 MPa respectivamente. La prótesis no sufrió ninguna fractura al no sobrepasar los valores anteriores al límite elástico del material que la constituye. La mayor deformación descrita fue de 1 m. Conclusiones: La mayor concentración de esfuerzos en la prótesis se ubicó en el punto de contacto de la cavidad prismática de la pieza superior al hacer contacto con el prisma de la pieza inferior. El dispositivo diseñado no sufrió ninguna deformación significativa ni se fracturó ante las cargas aplicadas(AU)


Introduction: The initial treatment of cervicalgia due to degeneration of the intervertebral discs is conservative, but in case of failure, discectomy is the usual surgical option, replacing the disc with a bone graft or another structure that fully or partially fulfills the functions of the former. The Neurosurgery Service of the Camilo Cienfuegos General Hospital in Cuba has designed a new cervical intervertebral disc prosthesis model to treat this disease. Objective: To evaluate the mechanical performance of the prosthesis designed through the finite element method under the usual loads of the cervical spine. Material and Methods: An experimental study was carried out using numerical simulation according to the finite element method, subjecting the prosthesis to the axial loads recommended by ASTM F2423-11e ISO 18192-1.2011 standards using Free CAD 0.18 software. Results: The greatest efforts supported by the prosthesis in the neutral position, anterior flexion and lateral flexion were 28.79 MPa, 52.29 MPa and 55.59 MPa, respectively. The prosthesis did not suffer any fracture as it did not exceed the values ​prior to the elastic limit of the material that constitutes it. The greatest deformation described was 1 956;m. Conclusions: The highest concentration of efforts in the prosthesis was located at the point of contact of the prismatic cavity of the upper part when making contact with the prism of the lower part. The designed device did not undergo any significant deformation or fracture at the applied loads(AU)


Subject(s)
Humans , Software , Bone Transplantation , Hospitals, General
10.
Journal of Biomedical Engineering ; (6): 303-309, 2021.
Article in Chinese | WPRIM | ID: wpr-879278

ABSTRACT

Lower extremity movement is a complex and large range of limb movement. Arterial stents implanted in lower extremity are prone to complex mechanical deformation, so the stent is required to have high comprehensive mechanical properties. In order to evaluate the mechanical property of different stents, in this paper, finite element method was used to simulate and compare the mechanical properties of six nitinol stents (Absolute Pro, Complete SE, Lifestent, Protégé EverFlex, Pulsar-35 and New) under different deformation modes, such as radial compression, axial compression/tension, bending and torsion, and the radial support performance of the stents was verified by experiments. The results showed that the comprehensive performance of New stent was better than other stents. Among which the radial support performance was higher than Absolute Pro and Pulsar-35 stent, the axial support performance was better than Complete SE, Lifestent and Protégé EverFlex stent, the flexibility was superior to Protégé Everflex stent, and the torsion performance was better than Complete SE, Lifestent and Protégé Everflex stent. The TTR2 type radial support force tester was used to test the radial support performance of 6 types, and the finite element analysis results were verified. The mechanical properties of the stent are closely related to the structural size. The result provides a reference for choosing a suitable stent according to the needs of the diseased location in clinical applications.


Subject(s)
Alloys , Femoral Artery , Finite Element Analysis , Lower Extremity , Mechanical Phenomena , Prosthesis Design , Stents , Stress, Mechanical
11.
Journal of Biomedical Engineering ; (6): 556-562, 2021.
Article in Chinese | WPRIM | ID: wpr-888213

ABSTRACT

This study aims to overcome the shortcomings such as low efficiency, high cost and difficult to carry out multi-parameter research, which limited the optimization of infusion bag configuration and manufacture technique by experiment method. We put forward a fluid cavity based finite element method, and it could be used to simulate the stress distribution and deformation process of infusion bag under external load. In this paper, numerical models of infusion bag with different sizes was built, and the fluid-solid coupling deformation process was calculated using the fluid cavity method in software ABAQUS subject to the same boundary conditions with the burst test. The peeling strength which was obtained from the peeling adhesion test was used as failure criterion. The calculated resultant force which makes the computed peeling stress reach the peeling strength was compared with experiment data, and the stress distribution was analyzed compared with the rupture process of burst test. The results showed that considering the errors caused by the difference of weak welding and eccentric load, the flow cavity based finite element method can accurately model the stress distribution and deformation process of infusion bag. It could be useful for the optimization of multi chamber infusion bag configuration and manufacture technique, leading to cost reduction and study efficiency improvement.


Subject(s)
Finite Element Analysis , Software , Stress, Mechanical
12.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 740-745, 2021.
Article in Chinese | WPRIM | ID: wpr-882188

ABSTRACT

Objective@#To analyze the effects of different restorations and the thickness of the occlusal space on the stress distribution of endodontically treated molars with endocrowns.@*Methods @# The finite element model of the restoration of the first mandibular molar was created, and four different endocrown materials were used including two resin based ceramics (Lava Ultimate, Vita Enamic), one lithium disilicate ceramic (IPS e.max CAD) and one zirconia ceramics (Cercon), and four kinds of surface space thickness were designed: 1 mm, 2 mm, 3 mm and 4 mm. A total of 600 N was loaded to simulate the maximum bite force in the vertical and inclined directions, and the finite element software ANSYS 10.0 was used to analyze the stress distribution@*Results@#The vertical loading analysis showed that the crown stress of the 1 mm-Cercon group was the highest at 211.30 MPa, and that of the 4 mm-Lava Ultimate group was the lowest at 11.56 MPa; the highest dentin stress was 38.84 MPa in the 3 mm-Lava Ultimate group, and the lowest was 11.68 MPa in 1 mm-Cercon group. The stress in the periodontal ligament and alveolar bone had little change. The inclined loading analysis showed that the crown stress of the 1 mm-Cercon group was the highest at 78.73 MPa and that of the 1 mm-Lava Ultimate group was the lowest at 35.51 MPa; the highest dentin stress was 41.63 MPa in the 1 mm-Cercon cervical group, and the lowest was 10.81 MPa in the 4 mm-Cercon coronal group. The stress concentration of cement and cervical dentin under inclined loading was higher than that under vertical loading.@* Conclusion @# The results of finite element analysis show that the elastic modulus of the endocrown increases, the stress of the crown restoration shows an upward trend, and the stress in the tooth shows a downward trend. With increasing crown thickness, the stress of the crown prosthesis decreased.

13.
Journal of Biomedical Engineering ; (6): 1103-1110, 2021.
Article in Chinese | WPRIM | ID: wpr-921851

ABSTRACT

China is the country with high incidence of high myopia in the world. High myopia can cause severe vision impairment. So far, there is no effective treatment for high myopia in clinic. Scleral collagen cross-linking surgery has been proven to be effective in preventing animal eye axial elongation


Subject(s)
Animals , Collagen , Cross-Linking Reagents , Finite Element Analysis , Photosensitizing Agents , Riboflavin , Sclera
14.
Journal of Forensic Medicine ; (6): 344-350, 2021.
Article in English | WPRIM | ID: wpr-985223

ABSTRACT

Objective Based on the theory of biomechanics, the finite element method was used to study the injury characteristics of different parts of brain hit by fist with different force and to predict the risk of craniocerebral injury, in order to provide reference for actual medical protection and forensic identification. Methods The finite element model of fist was constructed by using DICOM data modeling method and related software, and the effective mass and speed of fist were used to represent the kinetic energy of fist, and combined with human finite element model THUMS 4.02, the characteristics of craniocerebral injury caused by frontal and lateral blows were parametrically simulated. Results The probability of direct death from a blow to the head was low, but as fist power increased, so did the risk of craniocerebral injury. The characteristics of craniocerebral injury were also significantly different with the different fist hitting head locations. When the frontal area was attacked, the maximum equivalent stress of skull was 122.40 MPa, while that of brain tissue was 4.31 kPa. When the temporal area was attacked, the maximum equivalent stress of skull was 71.53 MPa, while that of brain tissue was 7.09 kPa. Conclusion The characteristics and risks of skull fracture and brain tissue injury are different when different parts of the brain are hit by fist. When the frontal area is hit, the risk of skull fracture is significantly higher than when the temporal area is hit. The risk of brain tissue injury is the opposite. The position with the highest probability of skull fracture is generally the place where the skull is directly impacted, and with the conduction of stress waves, it will spread to other parts of the skull, while the position with the highest risk of brain tissue injury is not the place where the brain is directly impacted.


Subject(s)
Humans , Biomechanical Phenomena , Craniocerebral Trauma/etiology , Finite Element Analysis , Head , Skull , Skull Fractures/etiology
15.
Dental press j. orthod. (Impr.) ; 25(4): 44-50, July-Aug. 2020. tab, graf
Article in English | LILACS, BBO | ID: biblio-1133679

ABSTRACT

ABSTRACT Objective: To perform a numerical simulation using FEM to study the von Mises stresses on Mushroom archwires. Methods: Mushroom archwires made of titanium-molybdenum alloy with 0.017 x 0.025-in cross-section were used in this study. A YS of 1240 MPa and a Young's modulus of 69 GPa were adopted. The archwire was modeled in Autodesk Inventor software and its behavior was simulated using the finite element code Ansys Workbench (Swanson Analysis Systems, Houston, Pennsylvania, USA). A large displacement simulation was used for non-linear analysis. The archwires were deformed in their extremities with 0° and 45°, and activated by their vertical extremities separated at 4.0 or 5.0 mm. Results: Tensions revealed a maximum of 1158 MPa at the whole part of the loop at 5.0mm of activation, except in a very small area situated at the top of the loop, in which a maximum of 1324 Mpa was found. Conclusions: Mushroom loops are capable to produce tension levels in an elastic range and could be safely activated up to 5.0mm.


RESUMO Objetivo: Realizar uma simulação numérica, por meio do Método dos Elementos Finitos (MEF), para obter as tensões de von Mises em arcos Mushroom. Métodos: Foram usados arcos com geometria Mushroom de titânio-molibdênio, com secção transversal 0,017" x 0,025". Adotou-se valores de tensão de escoamento (σesc) de 1.240 MPa e módulo de elasticidade (E) de 69 GPa. O arco foi modelado por meio do software Autodesk Inventor, e seu desempenho foi simulado utilizando-se o software de elementos finitos Ansys Workbench (Swanson Analysis System, Houston, Pennsylvania, EUA). Para a simulação, foi considerada a análise para grandes deslocamentos. O arco foi conformado em suas extremidades considerando-se planos de 0° e 45°, pré-ativado em 2,5mm e ativado por meio de suas extremidades verticais, separadas 4,0 mm ou 5,0 mm. Resultados: As tensões revelaram um valor máximo de 1.158 MPa na maior parte da alça, aos 5,0 mm de ativação, com exceção de uma área muito pequena, com valor de 1.324 MPa, situada no topo da alça. Conclusões: Os arcos Mushroom são capazes de produzir níveis de tensão situados dentro da região elástica e poderiam ser ativados com segurança até os 5,0 mm de ativação.


Subject(s)
Titanium , Finite Element Analysis , Molybdenum , Nonlinear Dynamics
16.
Journal of Biomedical Engineering ; (6): 614-621, 2020.
Article in Chinese | WPRIM | ID: wpr-828126

ABSTRACT

As a representative part of the oral system and masticatory robot system, the modeling method of the dental model is an important factor influencing the accuracy of the multi-body dynamic model. Taking the right first molars of the masticatory robot as the research object, an equivalent model, point-contact higher kinematic pair composed of v-shaped surface and sphere surface, was proposed. Firstly, the finite element method was used to analyze the occlusal dynamics of the original model in three static contact cases (intrusive contact, centric occlusion, and extrusive contact) and one dynamic chewing case, and the expected bite force was obtained. Secondly, the Hertz contact model was adopted to establish the analytical expression of the bite force of the equivalent model in three static contact cases. The normal vectors and contact stiffness in the expression were designed according to the expected bite force. Finally, the bite force performance of the equivalent model in three static contact cases and one dynamic chewing case was evaluated. The results showed that the equivalent model could achieve the equivalent bite force of 8 expected items in the static contact cases. Meanwhile, the bite force in the early and late stages of the dynamic chewing case coincides well with the original model. In the middle stage, a certain degree of impact is introduced, but it can be weakened by subsequent trajectory planning. The equivalent modeling scheme of the dental model proposed in this paper further improves the accuracy of the dynamic model of the multi-body system. It provides a new idea for the dynamic modeling of other complex human contacts.


Subject(s)
Humans , Biomechanical Phenomena , Bite Force , Mastication , Molar
17.
Journal of Biomedical Engineering ; (6): 622-629, 2020.
Article in Chinese | WPRIM | ID: wpr-828125

ABSTRACT

The dynamic analysis of the implantation process of a new vena cava filter was carried out by finite element analysis method to reveal the influence of the angle, length, width and thickness of the filter rod on its mechanical properties and the inner wall of the blood vessel. The results showed that the high-stress and high-strain areas of the filter were mainly concentrated in the connection between the filter rod and the filter wire. With the increase of the angle of the filter rod, the maximum equivalent stress and the maximum elastic strain on the filter wall decreased, while the maximum equivalent stress on the vascular wall increased. With the increase of the length of the filter rod, the maximum equivalent stress and strain peak of the filter wall increased, but the maximum equivalent stress of the vessel wall decreased. With the increase of the width and thickness of the filter rod, the maximum equivalent stress of the filter wall, the maximum elastic strain and the maximum equivalent stress of the vessel wall all showed an upward trend. The static safety factor of all filter models was greater than 1, and the structure after implantation was safe and reliable. The results of this study are expected to provide a theoretical basis for the structural optimization and deformation mechanism of the new type vena cava filter.


Subject(s)
Finite Element Analysis , Vena Cava Filters , Vena Cava, Inferior
18.
Journal of Medical Biomechanics ; (6): E546-E552, 2020.
Article in Chinese | WPRIM | ID: wpr-862345

ABSTRACT

Objective To quantitatively explore the influence of knife sharpness on forearm wounds in knife slash cases. Methods The finite element models of the upper limb and knives with 3 degrees of sharpness (with sharp blade, blunt blade, wide blade) were developed based on human CT images and prototype of slash knife. The slash by 3 kinds of knives on the forearm at velocity of 4 m/s and duration of 10 ms was simulated, so as to analyze changes in contact forces, wound dimensions and energy. Results During the slash by knives with sharp, blunt, wide blade, the blades reached the ulna at about 65, 85, 95 ms, respectively. The corresponding slash forces were 846, 1 064 and 1 865 N; the wound lengths were 135.64, 105.47 and 99.23 mm; the wound depths were 38.77, 27.81 and 18.74 mm. With the sharpness of blade decreasing, the wound formation was slowed, the length and depth decreased and the slash force increased. The model system for slash knife with sharp blade had obviously greater total energy and inner energy, but smaller kinetic energy, compared with slash knife with blunt blade and wide blade. Conclusions The method for quantitatively assessing wound formation in knife slash upon the forearm was developed. The research findings deepen the understanding of biomechanical mechanism of wound formation by knife slash, and provide new scientific means for forensic investigation and court trial of knife slash cases.

19.
Chinese Journal of Tissue Engineering Research ; (53): 3498-3503, 2020.
Article in Chinese | WPRIM | ID: wpr-847694

ABSTRACT

BACKGROUND: The three-dimensional printed titanium alloy porous structure has been developed rapidly in orthopedic implant design and clinical application due to its good mechanical properties and biocompatibility. Compared with coated prosthesis, the porous structure of titanium alloy trabecular bone has the advantages of fast and good bone growth. In order to ensure the safety of orthopedic implants, the tensile, shear and flexural fatigue strength of trabecular bone structures are determined by experimental methods. OBJECTIVE: To investigate the mechanical properties of trabecular bone porous structure by mechanical experiments and finite element numerical simulation. METHODS: (1) Tensile test of three-dimensional printed titanium alloy trabecular bone: three-dimensional printed titanium alloy trabecular bone was designed and fabricated. The wire diameter was 0.28-0.35 mm, the pore size was 0.71 mm, and the porosity was 73%. The tensile strength was detected, and the failure mechanism was analyzed. The effect of different printed parts on the tensile strength of trabecular bone was analyzed. (2) Numeric simulation test: a solid model of the tensile specimens including the theoretical structure of the trabecular bone was established to simulate the tensile failure process of trabecular bone specimens. RESULTS AND CONCLUSION: (1) The ultimate load of the three-dimensional printed titanium alloy trabecular bone was 39.55-47.11 kN, and an equivalent ultimate tensile stress was 62.79-74.53 MPa. The result of tensile failure was fracture of the network structure, suggesting that titanium alloy trabecular bone had higher tensile strength. (2) Results of tensile test and numeric simulation test showed that the failure location of trabecular bone was mainly on the wire diameter, but not on the interface between trabecular bone and titanium alloy solid. (3) The tensile failure load obtained by numerical simulation was lower than that of experimental results. The main reason is that the wire diameter of the three-dimensional printed trabecular bone (280-350 µm) was larger than that of the theoretical size (142 µm), and the pore size (75% porosity) was smaller than the theoretical value (96% porosity).

20.
Malaysian Journal of Medicine and Health Sciences ; : 66-74, 2020.
Article in English | WPRIM | ID: wpr-875923

ABSTRACT

@#Functional spinal unit (FSU) has been of major interest in research related to the human spine as it is the simplest entity of spine that is believed to provide vital information useful in analyzing the biomechanics of the spine. In-vitro experiments and in-vivo tests are implemented for this purpose, but due to many restraints in using them, the use of an alternate approach such as Finite Element Analysis (FEA) seems preferential. FEA offers an edge in evaluating significant parameters that may or may not be possible through experiments. The finite element analysis of FSU’s has evolved to handle complexity with the increase in computing capacity and advancement in the software packages. This paper reviews the progress in the development of finite element analysis of FSU’s and also focuses on the application of FEA to analyse the lumbar (L1-L5) and lumbosacral (L5-S1) levels of the spine where spinal disorders are more prevalent.

SELECTION OF CITATIONS
SEARCH DETAIL